Lead Guidelines for Primary Care Providers Caring for Migrant Children

Background

Lead poisoning is the most common disease of toxic environmental origin among children in the United States today.1 The Centers for Disease Control and Prevention (CDC) estimates that 250,000 children aged 1 to 5 years currently have blood lead levels of 10 µg/dL or greater.2

Blood lead levels in the United States have declined dramatically over the past 3 decades. From 1999-2004 the prevalence of blood lead levels greater than 10 µg/dL was at an all time low of 1.6%.6 This decline principally is due to removal of lead from gasoline and, additionally, to bans on the use of lead in household paint, food and drink cans, and plumbing systems.1,18 Despite this decline in blood lead levels greater than 10 µg/dL between 1999–2002, an estimated 1.4 million children in the United States (almost 14%) had blood lead levels between 5–9 µg/dL.5

Moreover, the risk of lead exposure remains disproportionately high among children who are poor, African American, and/or Hispanic.6 Among those least studied, are mobile Hispanic children.7 Migratory farmworkers have been shown to live in crowded conditions, in inadequate housing lacking basic facilities such as vacuum cleaners.8 Because of mobility, migratory farmworkers and their families face unique conditions that can potentially exacerbate health disparities including inconsistent health care and exposure to a constantly changing environment. A recent study found that children living in rental property and belonging to a family of migrant farmworkers were more likely to have elevated blood lead levels.9 Moving from place to place into different substandard housing units as well as nutritional deficiencies caused by an inconsistent diet were likely factors for both children and adults. Migrant farmworker children must, therefore, be considered a high-risk population for lead poisoning. Several older studies have documented increased lead exposure in migrant farmworker children, attributed to poor housing and soil contamination.10,11

Sources of Lead

Because of their normal oral exploratory behavior, children are most likely to acquire lead through ingestion.18

- **Lead-based paint** continues to be the principal source of high-dose lead exposure for children. An estimated 57 million housing units in the United States contain lead-based paint. Children are at especially high risk of exposure to lead from paint in housing built before 1978; these conditions exist in an estimated 3.8 million US homes with young children.12 Children may directly absorb lead from paint by ingesting paint chips (pica) or, more commonly, by ingestion and inhalation of lead-contaminated house dust.

- **Contaminated dust and soil** are pervasive sources of lead exposure.12 Concentrations of lead in dust and soil range from near zero to many thousands of parts per million (ppm). Lead in dust and soil appears to produce elevated children’s blood lead levels when the concentration exceeds 300 to 500 ppm.

- **Drinking water** is a common source of low-level lead exposure.12 Although high concentrations of lead in drinking water occur only in unusual circumstances (such as storage of water in lead-lined tanks), lead in water contributes widely to background exposure. At its source, drinking water is almost always lead-free. Water can, however, become contaminated as it passes through lead pipes or comes into contact with lead solder or brass faucets. Soft water of lower pH poses the greatest hazard because it has the greatest capacity to dissolve lead from pipes and solder.

- **Home remedies, folk medicines, ethnic foods** can be a source of lead poisoning. Numerous case reports have documented this hazard,13 and it appears to be especially common among ethnically isolated groups, including migrant children. Many ethnic products enjoyed by Hispanic families may be contaminated by lead. Seasonings may be contaminated due to the environments where they are processed and candies contaminated by the lead-ink wrappers they are packaged in. Other sources, such as grasshopper ingestion, have been linked to large “outbreaks” of lead poisoning in California Hispanic children.14 It is unclear why the grasshoppers contained lead.

- **Imported lead-glazed ceramics and pottery** may contribute to lead exposure. The hazard becomes especially severe when lead-glazed pottery is used to store acidic foods such as fruit juices or salsa.
Toys, jewelry, and crafts may also contain lead. The CDC website regularly posts recalled products. Examples include animal masks, pendants, plastic play sets, shoes, and fishing poles. The possibilities are numerous, so it is wise to check the CDC site periodically. Surface paints and coatings are the typical culprits.

Effects of Lead Poisoning

Lead is now recognized to produce a wide range of toxicity. These toxic effects extend from acute, clinically obvious poisoning to subclinical effects.¹

- **Acute poisoning** can be caused by intense exposure to lead, characterized by abdominal colic, constipation, fatigue, anemia, peripheral neuropathy, and alteration of central nervous system function.¹ In severe cases, a full-blown acute encephalopathy with coma, convulsions, and papilledema may occur. In milder cases, only headache or personality changes are evident.¹ Children who have recovered from acute lead encephalopathy often are left with permanent neurologic and behavioral sequelae.¹²,¹³

- **Lower-dose exposures** to lead produce toxic effects, which are typically asymptomatic and become evident only on special testing. These effects are evident principally in the following three organ systems: the developing red blood cells, the kidneys, and the nervous system. Hypochromic microcytic anemia, often associated with iron deficiency, is the classic hematologic manifestation of lead poisoning. High lead levels also can produce basophilic stippling in red blood cells. In the kidneys, acute lead poisoning can produce a full-blown, but reversible, Fanconi syndrome. Chronic, low-dose exposure can produce renal fibrosis and hypertension.

- **Asymptomatic impairment to the nervous system** has been shown by extensive research to be caused by lead at levels too low to produce obvious encephalopathy. Asymptomatic school-aged children with elevated lead levels have been found to have significant decrements in verbal IQ scores.¹² This finding was still strongly evident after adjusting for a wide range of socioeconomic, behavioral, and biologic factors. Long-term follow-up of asymptomatic school-aged children with elevated lead levels has shown that they are at increased risk during adolescence for dyslexia, failure to graduate from high school, and delinquency.¹

- **Early developmental delays**: A series of prospective studies of newborns⁴,¹⁵ has found associations between early developmental delays and umbilical cord blood lead levels as low as 10 to 20 µg/dL. These findings, which are highly credible, have been accepted by the CDC⁴ and by the National Academy of Sciences,¹⁵ and are the basis for the CDC recommendation that the blood lead level of concern in children is 10 µg/dL.⁴

Medical Evaluation

Two fundamental principles must guide assessment of lead exposure in migrant farmworker children.

1. All migrant children 0 to 6 years of age must be considered to be at high risk of lead poisoning. Their high-risk status reflects their poverty and especially their residence in substandard housing that may contain lead paint. In addition, many migrant farmworker children come from cultures with unique risk factors for lead exposure. Mobility across borders escalates opportunities for exposures.

2. Because most pediatric lead poisoning today is asymptomatic, the only reliable means for establishing or excluding a diagnosis of lead poisoning is through determination of the blood lead level. Neither the medical history nor the physical examination can establish or exclude a diagnosis of lead poisoning. Blood for lead analysis may be obtained either by a finger prick or venipuncture. If a blood lead level greater than or equal to 10 µg/dL is found by a finger prick, it must be confirmed by venipuncture. The erythrocyte protoporphyrin (EP) test is no longer considered a reliable diagnostic tool for lead poisoning.

Note: All migrant farmworker children 0 to 6 years of age should receive a minimum of two lead tests – one at approximately 1 year of age and the second at age 2. If never previously tested, consider testing even in later childhood. If the blood lead level is greater than or equal to 10 µg/dL in either of these evaluations, if a household member has elevated blood lead levels, or if the healthcare professional suspects that a child is exposed to lead, then additional and more frequent blood lead determinations are indicated.
Diagnosis and Plan

A confirmed venous blood lead level in a child of 10 µg/dL or greater establishes a diagnosis of lead poisoning. The management of a child with an elevated blood lead level depends upon the magnitude of the elevation. Table 1 offers recommendations for children with confirmed elevated blood lead levels ≥10 µg/dL. These recommendations are excerpted from the CDC guidelines, and endorsed by the American Academy of Pediatrics. Table 2 offers the CDC schedule for follow-up blood lead testing.

CDC also recognizes that a blood lead level of 10 µg/dL does not define a threshold for the harmful effects of lead. Recent studies offer strong evidence that physical and mental development of children can be affected at blood lead levels of less than 10 µg/dL. The CDC Advisory Committee on Childhood Lead Poisoning Prevention recommends providing anticipatory guidance to parents of all young children regarding sources of lead and helping them identify sources of lead in their child's environment.

In addition to lead poisoning prevention education, MCN recommends considering retesting migrant children within 3 months with blood lead levels between 5 and 9 µg/dL.

Table 1. Summary of Recommendations for Children with Confirmed (Venous) Elevated Blood Lead Levels

<table>
<thead>
<tr>
<th>Blood Lead Level (µg/dL)</th>
<th>10 - 14</th>
<th>15 - 19</th>
<th>20 - 44</th>
<th>45 - 69</th>
<th>>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead education</td>
<td>Lead education</td>
<td>Lead education</td>
<td>Lead education</td>
<td>Lead education</td>
<td>Hospitalize and commence chelation therapy</td>
</tr>
<tr>
<td>– Dietary</td>
<td>– Dietary</td>
<td>– Dietary</td>
<td>– Dietary</td>
<td>– Dietary</td>
<td>Proceed according to actions for 45-69 µg/dL</td>
</tr>
<tr>
<td>– Environmental</td>
<td>– Environmental</td>
<td>– Environmental</td>
<td>– Environmental</td>
<td>– Environmental</td>
<td></td>
</tr>
<tr>
<td>Follow-up blood lead monitoring</td>
<td></td>
</tr>
<tr>
<td>Proceed according to actions for 20-44 µg/dL if:</td>
<td></td>
</tr>
<tr>
<td>– A follow-up BLL is in this range at least 3 months after initial venous test or</td>
<td>– BLLs increase</td>
<td>– BLLs increase</td>
<td>– BLLs increase</td>
<td>– BLLs increase</td>
<td></td>
</tr>
<tr>
<td>Lab work:</td>
<td>Lab work:</td>
<td>Lab work:</td>
<td>Lab work:</td>
<td>Lab work:</td>
<td></td>
</tr>
<tr>
<td>– Hemoglobin or hematocrit</td>
<td></td>
</tr>
<tr>
<td>Environmental investigation</td>
<td>Environmental investigation</td>
<td>Environmental investigation</td>
<td>Environmental investigation</td>
<td>Environmental investigation</td>
<td></td>
</tr>
<tr>
<td>Lead hazard reduction</td>
<td></td>
</tr>
<tr>
<td>Neurodevelopmental monitoring</td>
<td>Neurodevelopmental monitoring</td>
<td>Neurodevelopmental monitoring</td>
<td>Neurodevelopmental monitoring</td>
<td>Neurodevelopmental monitoring</td>
<td></td>
</tr>
<tr>
<td>Abdominal X-ray (if particulate lead ingestion is suspected) with bowel decontamination if indicated</td>
<td>Abdominal X-ray (if particulate lead ingestion is suspected) with bowel decontamination if indicated</td>
<td>Abdominal X-ray (if particulate lead ingestion is suspected) with bowel decontamination if indicated</td>
<td>Abdominal X-ray (if particulate lead ingestion is suspected) with bowel decontamination if indicated</td>
<td>Abdominal X-ray (if particulate lead ingestion is suspected) with bowel decontamination if indicated</td>
<td></td>
</tr>
<tr>
<td>Chelation therapy</td>
<td>Chelation therapy</td>
<td>Chelation therapy</td>
<td>Chelation therapy</td>
<td>Chelation therapy</td>
<td></td>
</tr>
</tbody>
</table>

The following actions are NOT recommended at any blood lead level:

- Searching for gingival lead lines
- Testing of neurophysiologic function
- Evaluation of renal function (except during chelation with EDTA)
- Testing of hair, teeth, or fingernails for lead
- Radiographic imaging of long bones
- X-ray fluorescence of long bones

Table 2 Schedule for Follow-Up Blood Lead Testing*

<table>
<thead>
<tr>
<th>Venous blood lead level (µg/dL)</th>
<th>Early follow-up (first 2-4 tests after identification)</th>
<th>Late follow-up (after BLL begins to decline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-14</td>
<td>3 months(^b)</td>
<td>6-9 months</td>
</tr>
<tr>
<td>15-19</td>
<td>1-3 months(^b)</td>
<td>3-6 months</td>
</tr>
<tr>
<td>20-24</td>
<td>1-3 months(^b)</td>
<td>1-3 months</td>
</tr>
<tr>
<td>25-44</td>
<td>2 weeks-1 month</td>
<td>1 month</td>
</tr>
<tr>
<td>> 45</td>
<td>As soon as possible</td>
<td>Chelation with subsequent follow-up</td>
</tr>
</tbody>
</table>

* Seasonal variation of BLLs exists and may be more apparent in colder climate areas. Greater exposure in the summer months may necessitate more frequent follow ups.

\(^b\) Some case managers or PCPs may choose to repeat blood lead tests on all new patients within a month to ensure that their BLL level is not rising more quickly than anticipated.

The long-term goal of management is to prevent recurrence of lead poisoning in the affected child and also to prevent poisoning in siblings and in playmates. The worst tragedy is to discharge a child home after treatment only to have lead poisoning recur because the child is re-exposed.

Resources for Referral and Consultation

- Pediatric Environmental Health Specialty Units (PEHSU) offer medical information and advice on environmental conditions that influence children’s health. PEHSUs are academically based, typically at university medical centers, and are located across the United States, Canada and Mexico. These PEHSU form a network that is capable of responding to requests for information throughout North America and offering advice on prevention, diagnosis, management, and treatment of environmentally-related health effects in children. To find your regional PEHSU, contact the Association of Occupational and Environmental Clinics at www.aoec.org or (888) 347-2632.

- The CDC offers a listing of state and local lead programs and appropriate health department contacts at http://www.cdc.gov/nceh/lead/programs.htm

Resources for Education and Prevention

- Centers for Disease Control

 (800-232-4636)

 24 Hours/Every Day

 cdcinfo@cdc.gov

 http://www.cdc.gov/nceh/lead/

- The Migrant Clinicians Network website has numerous lead resources — downloadable Spanish language patient education materials, clinical resources targeting primary care providers, and links to other organizations on its lead web page: http://www.migrantclinician.org/clinical_topics/lead.html

Sources