POLICY STATEMENT

Pesticide Exposure in Children

abstract

This statement presents the position of the American Academy of Pediatrics on pesticides. Pesticides are a collective term for chemicals intended to kill unwanted insects, plants, molds, and rodents. Children encounter pesticides daily and have unique susceptibilities to their potential toxicity. Acute poisoning risks are clear, and understanding of chronic health implications from both acute and chronic exposure are emerging. Epidemiologic evidence demonstrates associations between early life exposure to pesticides and pediatric cancers, decreased cognitive function, and behavioral problems. Related animal toxicology studies provide supportive biological plausibility for these findings.

Recognizing and reducing problematic exposures will require attention to current inadequacies in medical training, public health tracking, and regulatory action on pesticides. Ongoing research describing toxicologic vulnerabilities and exposure factors across the life span are needed to inform regulatory needs and appropriate interventions. Policies that promote integrated pest management, comprehensive pesticide labeling, and marketing practices that incorporate child health considerations will enhance safe use. Pediatrics 2012;130:1–7

INTRODUCTION

Pesticides represent a large group of products designed to kill or harm living organisms from insects to rodents to unwanted plants or animals (eg, rodents), making them inherently toxic (Table 1). Beyond acute poisoning, the influences of low-level exposures on child health are of increasing concern. This policy statement presents the position of the American Academy of Pediatrics on exposure to these products. It was developed in conjunction with a technical report that provides a thorough review of topics presented here: steps that pediatricians should take to identify pesticide poisoning, evaluate patients for pesticide-related illness, provide appropriate treatment, and prevent unnecessary exposure and poisoning. Recommendations for a regulatory agenda are provided as well, recognizing the role of federal agencies in ensuring the safety of children while balancing the positive attributes of pesticides. Repellents reviewed previously (eg, N,N-diethyl-meta-toluamide, commonly known as DEET; picaridin) are not discussed.

SOURCES AND MECHANISMS OF EXPOSURE

Children encounter pesticides daily in air, food, dust, and soil and on surfaces through home and public lawn or garden application, household insecticide use, application to pets, and agricultural product
ACUTE PESTICIDE TOXICITY

Clinical Signs and Symptoms

High-dose pesticide exposure may result in immediate, devastating, even lethal consequences. Table 2 summarizes features of clinical toxicity for the major pesticides classes. It highlights the similarities of common classes of pesticides (e.g., organophosphates, carbamates, and pyrethroids) and underscores the importance of discriminating among them because treatment modalities differ. Having an index of suspicion based on familiarity with toxic mechanisms and taking an environmental history provides the opportunity for discerning a pesticide’s role in clinical decision-making. Pediatric care providers have a poor track record for recognition of acute pesticide poisoning. This reflects their self-reported lack of medical education and self-efficacy on the topic. More in-depth review of acute toxicity and management can be found in the accompanying technical report or recommended resources in Table 3.

The local or regional poison control center plays an important role as a resource for any suspected pesticide poisoning. There is no current reliable way to determine the incidence of pesticide exposure and illness in US children. Existing data systems, such as the American Association of Poison Control Centers’ National Poison Data System or the National Institute for Occupational Safety and Health’s Sentinel Event Notification System for Occupational Risks, capture limited information about acute poisoning and trends over time.

There is also no national systematic reporting on the use of pesticides by consumers or licensed professionals. The last national survey of consumer pesticide use in homes and gardens was in 1993 (Research Triangle Institute study). Improved physician education, accessible and reliable biomarkers, and better diagnostic testing methods to readily identify suspected pesticide illness would significantly improve reporting and surveillance. Such tools would be equally important in improving clinical decision-making and reassuring families if pesticides can be eliminated from the differential diagnosis.

The Pesticide Label

The pesticide label contains information for understanding and preventing acute health consequences: the active ingredient; signal words identifying acute toxicity potential; US Environmental Protection Agency (EPA) registration number; directions for use, including protective equipment recommendations, storage, and disposal; and manufacturer’s contact information. Basic first aid advice is provided, and some labels contain a “note for physicians” with specific relevant medical information. The label does not specify the pesticide class or “other”/“inert” ingredients that may have significant toxicity and can account for up to 99% of the product.

Chronic toxicity information is not included, and labels are predominantly available in English. There is significant use of illegal pesticides (especially in immigrant communities), off-label use, and overuse, underscoring the importance of education, monitoring, and enforcement.
Dosing experiments in animals clearly demonstrate the acute and chronic toxicity potential of multiple pesticides. Many pesticide chemicals are classified by the US EPA as carcinogens. The past decade has seen an expansion of the epidemiologic evidence base supporting adverse effects after acute and chronic pesticide exposure in children. This includes increasingly sophisticated studies addressing combined exposures and genetic susceptibility. Chronic toxicity end points identified in epidemiologic studies include adverse birth outcomes including preterm birth, low birth weight, and congenital anomalies.
anomalies, pediatric cancers, neurobehavioral and cognitive deficits, and asthma. These are reviewed in the accompanying technical report. The evidence base is most robust for associations to pediatric cancer and adverse neurodevelopment. Multiple case-control studies and evidence reviews support a role for insecticides in the risk of brain tumors and acute lymphoblastic leukemia. Prospective birth cohort studies in the United States link early-life exposure to organophosphate insecticides with reductions in IQ and abnormal behaviors associated with attention-deficit/hyperactivity disorder and autism. The need to better understand and address the health consequences of exposure to pesticides has been emphasized by the National Research Council. The National Research Council (2007) has called for an increased understanding of the health effects of pesticide exposure, including the development of new methods for risk assessment and the identification of mechanisms underlying the health effects observed. The National Research Council (2007) has also recommended the development of new methods for risk assessment and the identification of mechanisms underlying the health effects observed. The National Research Council (2007) has also recommended the development of new methods for risk assessment and the identification of mechanisms underlying the health effects observed.

EXPOSURE PREVENTION APPROACHES

The concerning and expanding evidence base of chronic health consequences of pesticide exposure underscores the importance of efforts aimed at decreasing exposure. Integrated pest management (IPM) is an established but underused approach to pest control designed to minimize and, in some cases, replace the use of pesticide chemicals while achieving acceptable control of pest populations. IPM programs and strategies have been implemented in agriculture and to address weeds and pest control in residential settings and schools, commercial structures, lawn and turf, and community gardens. Reliable resources are available from the US EPA and University of California—Davis (Table 3). Other local policy approaches in use are posting warning signs of pesticide use, restricting spray zones, and controlling vegetation. The University of California—Davis (Table 3) provides a comprehensive and well-organized list of web link resources on pesticides.

<table>
<thead>
<tr>
<th>Topic/Resource</th>
<th>Additional Information</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Poison Control Centers</td>
<td>Cooperative agreement between Oregon State University and the US EPA. NPMMP provides informational assistance by E-mail in the assessment of human exposure to pesticides.</td>
<td>npmpp@oregonstate.edu or by fax at (541) 737-9047</td>
</tr>
<tr>
<td>Pediatric Environmental Health Specialty Units (PEHSUs)</td>
<td>Coordinated by the Association of Occupational and Environmental Clinics to provide regional academically based free consultation for health care providers</td>
<td>www.aoc.org/PEHSU.htm; toll-free telephone number (888) 347-AOEC (extension 2632)</td>
</tr>
<tr>
<td>US EPA</td>
<td>Household pest control</td>
<td></td>
</tr>
<tr>
<td>Citizens Guide to Pest Control and Pesticide Safety</td>
<td>Alternatives to chemical pesticides</td>
<td></td>
</tr>
<tr>
<td>Controlling pests</td>
<td>How to choose pesticides</td>
<td></td>
</tr>
<tr>
<td>The University of California Integrative Pest Management Program</td>
<td>How to use, store, and dispose of them safely</td>
<td></td>
</tr>
<tr>
<td>Other resources</td>
<td>How to prevent pesticide poisoning</td>
<td></td>
</tr>
<tr>
<td>National research programs addressing children's health and pesticides</td>
<td>How to choose a pest-control company</td>
<td></td>
</tr>
<tr>
<td>US EPA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From the American Academy of Pediatrics
play a role in promotion of development of model programs and practices in the communities and schools of their patients.

RECOMMENDATIONS

Three overarching principles can be identified: (1) pesticide exposures are common and cause both acute and chronic effects; (2) pediatricians need to be knowledgeable in pesticide identification, counseling, and management; and (3) governmental actions to improve pesticide safety are needed. Whenever new public policy is developed or existing policy is revised, the wide range of consequences of pesticide use on children and their families should be considered. The American Academy of Pediatrics, through its chapters, committees, councils, sections, and staff, can provide information and support for public policy advocacy efforts. See http://www.aap.org/advocacy.html for additional information or contact chapter leadership.

Recommendations to Pediatricians

1. Acute exposures: become familiar with the clinical signs and symptoms of acute intoxication from the major types of pesticides. Be able to translate clinical knowledge about pesticide hazards into an appropriate exposure history for pesticide poisoning.

2. Chronic exposures: become familiar with the subclinical effects of chronic exposures and routes of exposure from the major types of pesticides.

3. Resource identification: know locally available resources for acute toxicity management and chronic low-dose exposure (see Table 3).

4. Pesticide labeling knowledge: understand the usefulness and limitations of pesticide chemical information on pesticide product labels.

5. Counseling: Ask parents about pesticide use in or around the home to help determine the need for providing targeted anticipatory guidance. Recommend use of minimal-risk products, safe storage practices, and application of IPM (least toxic methods), whenever possible.

6. Advocacy: work with schools and governmental agencies to advocate for application of least toxic pesticides by using IPM principles. Promote community right-to-know procedures when pesticide spraying occurs in public areas.

Recommendations to Government

1. Marketing: ensure that pesticide products as marketed are not attractive to children.

2. Labeling: include chemical ingredient identity on the label and/or the manufacturer’s Web site for all product constituents, including inert ingredients, carriers, and solvents. Include a label section specific to “Risks to children,” which informs users whether there is evidence that the active or inert ingredients have any known chronic or developmental health concerns for children. Enforce labeling practices that ensure users have adequate information on product contents, acute and chronic toxicity potential, and emergency information. Consider printing or making available labels in Spanish in addition to English.

3. Exposure reduction: set goal to reduce exposure overall. Promote application methods and practices that minimize children’s exposure, such as using bait stations and gels, advising against overuse of pediculicides. Promote education regarding proper storage of product.

4. Reporting: make pesticide-related suspected poisoning universally reportable and support a systematic central repository of such incidents to optimize national surveillance.

5. Exportation: aid in identification of least toxic alternatives to pesticide use internationally, and unless safer alternatives are not available or are impossible to implement, ban export of products that are banned or restricted for toxicity concerns in the United States.

6. Safety: continue to evaluate pesticide safety. Enforce community right-to-know procedures when pesticide spraying occurs in public areas. Develop, strengthen, and enforce standards of removal of concerning products for home or child product use. Require development of a human biomarker, such as a urinary or blood measure, that can be used to identify exposure and/or early health implications with new pesticide chemical registration or reregistration of existing products. Developmental toxicity, including endocrine disruption, should be a priority when evaluating new chemicals for licensing or reregistration of existing products.

7. Advance less toxic pesticide alternatives: increase economic incentives for growers who adopt IPM, including less toxic pesticides. Support research to expand and improve IPM in agriculture and nonagricultural pest control.

8. Research: support toxicologic and epidemiologic research to better identify and understand health risks associated with children’s exposure to pesticides. Consider supporting another national study of pesticide use in the home and garden setting of US households as a targeted initiative or through cooperation with existing research opportunities (eg, National Children’s Study, NHANES).

9. Health provider education and support: support educational efforts to increase the capacity of pediatric health care providers to diagnose and manage acute pesticide
poisoning and reduce pesticide exposure and potential chronic pesticide effects in children. Provide support to systems such as Poison Control Centers to provide timely, expert advice on exposures. Require the development of diagnostic tests to assist providers with diagnosing (and ruling out) pesticide poisoning.

LEAD AUTHORS
James R. Roberts, MD, MPH
Catherine J. Karr, MD, PhD

REFERENCES

FORMER EXECUTIVE COMMITTEE MEMBERS
Helen J. Binns, MD, MPH

STAFF
Paul Spire

